在本文中,我们研究了代理人(个人)具有战略性或自我利益的情况,并且在报告数据时关注其隐私。与经典环境相比,我们的目标是设计机制,这些机制既可以激励大多数代理来真实地报告他们的数据并保留个人报告的隐私,而它们的输出也应接近基础参数。在本文的第一部分中,我们考虑了协变量是次高斯的情况,并且在他们只有有限的第四瞬间的情况下进行了重尾。首先,我们是受可能性功能最大化器的固定条件的动机,我们得出了一种新颖的私人和封闭式估计量。基于估算器,我们提出了一种机制,该机制通过对几种规范模型的计算和付款方案进行一些适当的设计具有以下属性,例如线性回归,逻辑回归和泊松回归:(1)机制为$ O(1) $ - 接点差异私有(概率至少$ 1-O(1)$); (2)这是一个$ o(\ frac {1} {n})$ - 近似于$(1-o(1))$的代理的近似贝叶斯nash平衡,以真实地报告其数据,其中$ n $是代理人的数量; (3)输出可能会达到基础参数的$ O(1)$; (4)对于机制中的$(1-o(1))$的代理分数是个人合理的; (5)分析师运行该机制所需的付款预算为$ O(1)$。在第二部分中,我们考虑了在更通用的环境下的线性回归模型,在该设置中,协变量和响应都是重尾,只有有限的第四次矩。通过使用$ \ ell_4 $ -norm收缩运算符,我们提出了一种私人估算器和付款方案,该方案具有与次高斯案例相似的属性。
translated by 谷歌翻译
我们报告了以前未被发现的多项式加强学习(MARL),名为“责任扩散”(DR)。博士导致谈判可靠的责任划分以完成复杂的合作任务。它反映了现有算法如何处理基于价值和基于策略的MARL方法的多种探索难题的缺陷。该DR问题与社会心理学领域(也称为旁观者效应)中具有相同名称的现象具有相似之处。在这项工作中,我们从理论上分析了DR问题的原因开始,我们强调DR问题与奖励成型或信用分配问题无关。为了解决DR问题,我们提出了一种政策共振方法,以改变多种勘探探索策略并促进MARL算法在困难的MARL任务中的性能。大多数现有的MARL算法可以配备此方法,以解决由DR问题引起的性能降解。实验是在多个测试基准任务中进行的,包括FME,诊断性多种环境和竞争性的多基因游戏ADCA。最后,我们在SOTA MARL算法上实施了策略共振方法,以说明这种方法的有效性。
translated by 谷歌翻译
多基础强化学习(MARL)可以解决复杂的合作任务。但是,现有的MAL方法的效率在很大程度上取决于明确定义的奖励功能。具有稀疏奖励反馈的多项式任务尤其具有挑战性,这不仅是由于信用分配问题,而且还因为获得积极的奖励反馈的可能性较低。在本文中,我们设计了一个称为合作图(CG)的图形网络。合作图是两个简单的二分图的组合,即代理聚类子图(ACG)和指定子图(CDG)的群集。接下来,基于这种新颖的图形结构,我们提出了一个合作图多力增强学习(CG-MARL)算法,该算法可以有效地处理多基因任务中的稀疏奖励问题。在CG-MARL中,代理由合作图直接控制。政策神经网络经过培训,可以操纵这一合作图,并指导代理人以隐式的方式实现合作。 CG-MARL的层次结构特征为定制集群活动提供了空间,这是一个可扩展的界面,用于引入基本合作知识。在实验中,CG-MARL在稀疏奖励多基准基准中显示出最新的性能,包括抗侵袭拦截任务和多货车交付任务。
translated by 谷歌翻译
随机梯度下降(SGD)是现代机器学习(ML)系统的基石。尽管具有其计算效率,但SGD仍需要随机数据访问,这些数据访问在依赖块可调地理的二级存储的系统中实现效率低下,例如HDD和SSD,例如TensorFlow/Pytorch和DB ML系统,而不是大文件。为了解决这种阻抗不匹配,已经提出了各种数据改组策略,以平衡SGD的收敛速率(有利于随机性)及其I/O性能(有利于顺序访问)。在本文中,我们首先对现有数据改组策略进行系统的实证研究,该研究表明,所有现有策略都有改进的空间 - 它们都在I/O性能或融合率方面受苦。考虑到这一点,我们提出了一种简单但新颖的分层数据改组策略Corgipile。与现有的策略相比,Corgipile避免了完整的数据洗牌,同时保持SGD的可比收敛速度,就好像执行了完整的混音一样。我们对Corgipile的融合行为提供了非平凡的理论分析。我们通过在新的CorgipileDataSet API中设计新的平行/分布式洗牌操作员来进一步将Corgipile整合到Pytorch中。我们还通过介绍具有优化的三个新的物理运营商,将Corgipile集成到PostgreSQL中。我们的实验结果表明,Corgipile可以与全面的SGD达到可比的收敛速率,以实现深度学习和广义线性模型。对于ImageNet数据集的深度学习模型,Corgipile比带有完整数据洗牌的Pytorch快1.5倍。对于具有线性模型的INDB ML,在HDD和SSD上,Corgipile的Corgipile比两个最先进的IN-DB ML系统(Apache Madlib和Bismarck)快1.6 x-12.8倍。
translated by 谷歌翻译
在本文中,我们从优化的角度研究了对比度学习,旨在分析和解决现有的对比学习方法的基本问题,这些方法依靠大批量大小或大型矢量词典。我们考虑了对比度学习的全球目标,该目标将每个正对与锚点的所有负对对比。从优化的角度来看,我们解释了为什么诸如SIMCLR之类的现有方法需要大批量大小才能获得令人满意的结果。为了消除此类要求,我们提出了一种记忆有效的随机优化算法,用于求解名为SOGCLR的对比度学习的全局目标。我们表明,在足够数量的迭代次数之后,在合理条件下,其优化误差可以忽略不计,或者对于稍有不同的全局对比目标而减少。从经验上讲,我们证明具有小批量大小的SOGCLR(例如256)可以在Imagenet-1k上的自我监督学习任务上获得与具有较大批量大小(例如8192)的SIMCLR相似的性能。我们还试图证明所提出的优化技术是通用的,可以应用于解决其他对比损失,例如双峰对比度学习的双向对比损失。提出的方法是在我们开源的图书馆libauc(www.libauc.org)中实现的。
translated by 谷歌翻译
多种子体形成以及障碍物避免是多助理系统领域最受研究的主题之一。虽然一些经典控制器等模型预测控制(MPC)和模糊控制实现了一定的成功措施,但大多数都需要在恶劣环境中无法访问的精确全局信息。另一方面,一些基于加强学习(RL)的方法采用了领导者 - 跟随器结构来组织不同的代理行为,这使得造成诸如机动性和鲁棒性的瓶颈之间的代理之间的合作。在本文中,我们提出了一种基于多功能钢筋学习(Marl)的分布式形成和障碍避免方法。我们系统中的代理只能利用本地和相关信息来分发决策和控制自己。在多代理系统中的代理将在任何断开连接的情况下快速重新组织到新的拓扑中。与基线(经典控制方法和其他基于RL的方法)相比,我们的方法实现了更好的形成误差,形成收敛速度和障碍物的成功率的成功率。通过使用Ackermann-tenting车辆的模拟和硬件实现来验证我们的方法的可行性。
translated by 谷歌翻译
基于深度学习的模型占主导地位的生产推荐系统的当前景观。此外,近年来目睹了模型规模的指数增长 - 从谷歌的2016年模型,最新的Facebook的型号有10亿个参数,具有12万亿参数。型号容量的每次跳跃都有显着的质量增强,这使我们相信100万亿参数的时代即将来临。然而,即使在工业规模数据中心内,这些模型的培训也在挑战。这种困难是从训练计算的惊人的异质性继承 - 模型的嵌入层可以包括总模型尺寸的99.99%,这是极其内存密集的;虽然其余的神经网络越来越多地计算密集型。为支持培训此类巨大模式,迫切需要有效的分布式培训系统。在本文中,我们通过仔细共同设计优化算法和分布式系统架构来解决这一挑战。具体而言,为了确保培训效率和训练精度,我们设计一种新型混合训练算法,其中嵌入层和密集的神经网络由不同的同步机制处理;然后,我们构建一个名为Persia的系统(短暂的并行推荐培训系统,其中包含混合加速),以支持这种混合培训算法。理论上的示范和实证研究均达到100万亿参数,以证明了波斯的系统设计和实施。我们将Pensia公开使用(在https://github.com/persiamml/persia),以便任何人都能够以100万亿参数的规模轻松培训推荐模型。
translated by 谷歌翻译
建立社会智能的代理人涉及许多挑战。其中之一是跟踪代理商的精神状态过渡,并教给代理人像人类一样以其价值为指导的决定。为此,我们建议将心理状态模拟和价值建模纳入对话代理。首先,我们建立了一个混合精神状态解析器,该解析器从对话和事件观察中提取信息,并保持代理人思想的图形表示;同时,基于变压器的价值模型从人类价值数据集Valuenet中学习人类的偏好。经验结果表明,所提出的模型在幻想文本冒险游戏数据集中的对话/动作/情感预测任务上达到了最先进的表现。我们还展示了示例案例以证明:(i)拟议的精神状态解析器如何通过基于位置和物体等环境来帮助代理商的决定,以及(ii)价值模型如何帮助代理商根据其个人个人做出决策优先事项。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译
To generate high quality rendering images for real time applications, it is often to trace only a few samples-per-pixel (spp) at a lower resolution and then supersample to the high resolution. Based on the observation that the rendered pixels at a low resolution are typically highly aliased, we present a novel method for neural supersampling based on ray tracing 1/4-spp samples at the high resolution. Our key insight is that the ray-traced samples at the target resolution are accurate and reliable, which makes the supersampling an interpolation problem. We present a mask-reinforced neural network to reconstruct and interpolate high-quality image sequences. First, a novel temporal accumulation network is introduced to compute the correlation between current and previous features to significantly improve their temporal stability. Then a reconstruct network based on a multi-scale U-Net with skip connections is adopted for reconstruction and generation of the desired high-resolution image. Experimental results and comparisons have shown that our proposed method can generate higher quality results of supersampling, without increasing the total number of ray-tracing samples, over current state-of-the-art methods.
translated by 谷歌翻译